THE FUNDAMENTAL THEOREM OF CARDINAL ARITHMETIC

Theorem 1. $\kappa^{2}=\kappa$ for every infinite cardinal κ.
We need to show that there is a bijection between κ and $\kappa \times \kappa$. Let us give two proofs. The first one relies on the fact that for every well-ordering $(L,<)$ there is a unique ordinal α such that $(L,<) \cong(\alpha, \in)$. The second proof is even more elementary, it is based on Zorn's lemma. Both of the proofs uses transfinite induction on κ. To start the induction let $F(n)=(\ell, m)$ for the unique (ℓ, m) with $n=2^{\ell} \cdot(2 m+1)-1$. This F is a bijection between ω and $\omega \times \omega$. Let κ be an uncountable cardinal.

First proof: We define a well-order on $\kappa \times \kappa$ by letting $\left(\alpha_{0}, \beta_{0}\right) \prec\left(\alpha_{1}, \beta_{1}\right)$ iff

$$
\begin{aligned}
& \max \left\{\alpha_{0}, \beta_{0}\right\}<\max \left\{\alpha_{1}, \beta_{1}\right\} \text { or } \\
& \max \left\{\alpha_{0}, \beta_{0}\right\}=\max \left\{\alpha_{1}, \beta_{1}\right\} \text { and } \alpha_{0}<\alpha_{1} \text { or } \\
& \max \left\{\alpha_{0}, \beta_{0}\right\}=\max \left\{\alpha_{1}, \beta_{1}\right\} \text { and } \alpha_{0}=\alpha_{1} \text { and } \beta_{0}<\beta_{1} .
\end{aligned}
$$

(Check that this is indeed a well-order!) Then there is an ordinal λ and an orderpreserving bijection f from (λ, \in) to $(\kappa \times \kappa, \prec)$. We claim that $\lambda=\kappa$. Since $|\kappa \times \kappa| \geq \kappa$ obviously holds, we know that λ must be at least κ. Suppose for a contradiction that $\lambda>\kappa$ and let $(\alpha, \beta):=f(\kappa)$. Then on the one hand, there are κ many elements below (α, β) with respect to $\prec($ namely $f(\gamma)$ for $\gamma<\kappa\})$. On the other hand, every such element has only coordinates smaller than $\max \{\alpha, \beta\}<\kappa$ so there are at most $|\max \{\alpha, \beta\}|^{2}$ such elements. By induction $|\max \{\alpha, \beta\}|^{2}=|\max \{\alpha, \beta\}|<\kappa$, a contradiction.

Second proof: Consider the set

$$
P:=\left\{f: f \text { is a function with } \omega \subseteq D_{f} \subseteq \kappa, R_{f}=D_{f} \times D_{f}\right\}
$$

partially ordered by \subseteq (i.e. g is larger than f iff $D_{g} \supseteq D_{f}$ and $f(\alpha)=g(\alpha)$ for $\alpha \in D_{f}$). The conditions of Zorn's lemma hold: for a non-empty chain the union of its elements is an upper bound in (P, \subseteq), for the empty chain any element is an upper bound ($P \neq \emptyset$ because $F \in P$). Let h be a maximal element in (P, \subseteq). If $\left|D_{h}\right|=\kappa$, then by using a bijection between D_{h} and $\left|D_{h}\right|$ we can obtain a desired $\kappa \rightarrow \kappa \times \kappa$ bijection from h. Suppose for a contradiction that $\left|D_{h}\right|<\kappa$. Then we must have $\left|\kappa \backslash D_{h}\right|=\kappa$. Indeed, if we had $\left|\kappa \backslash D_{h}\right|<\kappa$, then
$\kappa=\left|D_{h}\right|+\left|\kappa \backslash D_{h}\right| \leq 2 \cdot \max \left\{\left|D_{h}\right|,\left|\kappa \backslash D_{h}\right|\right\} \leq \max \left\{\left|D_{h}\right|,\left|\kappa \backslash D_{h}\right|\right\}^{2} \stackrel{\text { induc. }}{=} \max \left\{\left|D_{h}\right|,\left|\kappa \backslash D_{h}\right|\right\}<\kappa$
which is impossible, so $\left|\kappa \backslash D_{h}\right|=\kappa$, as we claimed.
Let $X \subseteq \kappa \backslash D_{h}$ with $\left|D_{h}\right|=|X|=: \lambda$. We show that there is a bijection h^{\prime} between X and $X^{2} \cup\left(D_{h} \times X\right) \cup\left(X \cup D_{h}\right)$. Note that if it is done, then $h \cup h^{\prime}: D_{h} \cup X \rightarrow\left(D_{h} \cup X\right) \times\left(D_{h} \cup X\right)$ is a bijection contradicting the maximality of h. To ensure the existence of h^{\prime}, we prove by using the induction hypothesis for λ, that $\left|X^{2} \cup\left(D_{h} \times X\right) \cup\left(X \cup D_{h}\right)\right|=\lambda$:

$$
\begin{array}{r}
\left|X^{2} \cup\left(D_{h} \times X\right) \cup\left(X \times D_{h}\right)\right|= \\
\left|X^{2}\right|+\left|D_{h} \times X\right|+\left|X \times D_{h}\right|= \\
|X|^{2}+\left|D_{h}\right| \cdot|X|+|X| \cdot\left|D_{h}\right|= \\
\lambda^{2}+\lambda^{2}+\lambda^{2}=3 \cdot \lambda^{2}=3 \cdot \lambda \leq \lambda \cdot \lambda=\lambda
\end{array}
$$

